49 research outputs found

    Excessive Daytime Sleepiness Is a Common Symptom in Fabry Disease

    Get PDF
    Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by a deficient activity of the enzyme α-galactosidase A, resulting in a vasculopathic involvement of various organ systems, e.g. cerebral structures. Marked cerebral vasculopathy with subsequent white matter lesions (WML) are a frequent finding in FD patients. Recent studies discussed an association between cerebral white matter changes and sleep-related disturbances of breathing, which may lead to excessive daytime sleepiness (EDS). A 56-year-old Caucasian female FD patient with EDS was admitted to our sleep laboratory. Overnight polysomnography showed a Cheyne-Stokes respiration pattern with significant O2 desaturation. MR imaging revealed confluent WML including the brain stem, but no renal or cardiac involvement. We then evaluated the clinical data of 49 genetically proven FD patients (27 males; mean age 43 years) from our FD centre. With a frequency of 68%, EDS exceeds the prevalence of other common symptoms of FD (angiokeratomas 61%; acroparaesthesia 51%; renal involvement 29%; cardiac involvement 27%), and the prevalence of chronic fatigue (48%). EDS was independently associated with the physical component summary of the SF-36 data (corrected R2 = −0.323, p < 0.001). EDS and age explained a quarter of variance in mental component summary (corrected R2 = −0.253, p < 0.001). We conclude that EDS is a common and underdiagnosed symptom in FD patients, accompanied by a significant impact on quality of life. EDS might be caused by central breathing disorders due to an affection of brain regions associated with respiratory control in FD

    Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields

    Full text link
    Background: To overcome flow and electrocardiogram-trigger artifacts in cardiovascular magnetic resonance (CMR), we have implemented a cardiac and respiratory self-gated cine ultra-short echo time (UTE) sequence. We have assessed its performance in healthy mice by comparing the results with those obtained with a self-gated cine fast low angle shot (FLASH) sequence and with echocardiography. Methods: 2D self-gated cine UTE (TE/TR = 314 μs/6.2 ms, resolution: 129 × 129 μm, scan time per slice: 5 min 5 sec) and self-gated cine FLASH (TE/TR = 3 ms/6.2 ms, resolution: 129 × 129 μm, scan time per slice: 4 min 49 sec) images were acquired at 9.4 T. Volume of the left and right ventricular (LV, RV) myocardium as well as the end-diastolic and -systolic volume was segmented manually in MR images and myocardial mass, stroke volume (SV), ejection fraction (EF) and cardiac output (CO) were determined. Statistical differences were analyzed by using Student t test and Bland-Altman analyses. Results: Self-gated cine UTE provided high quality images with high contrast-to-noise ratio (CNR) also for the RV myocardium (CNRblood-myocardium = 25.5 ± 7.8). Compared to cine FLASH, susceptibility, motion, and flow artifacts were considerably reduced due to the short TE of 314 μs. The aortic valve was clearly discernible over the entire cardiac cycle. Myocardial mass, SV, EF and CO determined by self-gated UTE were identical to the values measured with self-gated FLASH and showed good agreement to the results obtained by echocardiography. Conclusions: Self-gated UTE allows for robust measurement of cardiac parameters of diagnostic interest. Image quality is superior to self-gated FLASH, rendering the method a powerful alternative for the assessment of cardiac function at high magnetic fields.</p

    G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF), alone or in combination with stem cell factor (SCF), can improve hemodynamic cardiac function after myocardial infarction. Apart from impairing the pump function, myocardial infarction causes an enhanced vulnerability to ventricular arrhythmias. Therefore, we investigated the electrophysiological effects of G-CSF/SCF and the underlying cellular events in a murine infarction model

    Application of Complexity Measures to Stratospheric Dynamics

    Get PDF
    This thesis examines the utility of mathematical complexity measures for the analysis of stratospheric dynamics. Through theoretical considerations and tests with artificial data sets, e.g., the iteration of the logistic map, suitable parameters are determined for the application of the statistical entropy measures sample entropy (SE) and Rényi entropy (RE) to methane (a long-lived stratospheric tracer) data from simulations of the SOCOL chemistry-climate model. The SE is shown to be useful for quantifying the variability of recurring patterns in a time series and is able to identify tropical patterns similar to those reported by previous studies of the ``tropical pipe'' region. However, the SE is found to be unsuitable for use in polar regions, due to the non-stationarity of the methane data at extra-tropical latitudes. It is concluded that the SE cannot be used to analyse climate complexity on a global scale. The focus is turned to the RE, which is a complexity measure of probability distribution functions (PDFs). Using the second order RE and a normalisation factor, zonal PDFs of ten consecutive days of methane data are created with a Bayesian optimal binning technique. From these, the RE is calculated for every day (moving 10-day window). The results indicate that the RE is a promising tool for identifying stratospheric mixing barriers. In Southern Hemisphere winter and early spring, RE produces patterns similar to those found in other studies of stratospheric mixing. High values of RE are found to be indicative of the strong fluctuations in tracer distributions associated with relatively unmixed air in general, and with gradients in the vicinity of mixing barriers, in particular. Lower values suggest more thoroughly mixed air masses. The analysis is extended to eleven years of model data. Realistic inter-annual variability of some of the RE structures is observed, particularly in the Southern Hemisphere. By calculating a climatological mean of the RE for this period, additional mixing patterns are identified in the Northern Hemisphere. The validity of the RE analysis and its interpretation is underlined by showing that qualitatively similar patterns can be seen when using observational satellite data of a different tracer. Compared to previous techniques, the RE has the advantage that it requires significantly less computational effort, as it can be used to derive dynamical information from model or measurement tracer data without relying on any additional input such as wind fields. The results presented in this thesis strongly suggest that the RE is a useful new metric for analysing stratospheric mixing and its variability from climate model data. Furthermore, it is shown that the RE measure is very robust with respect to data gaps, which makes it ideal for application to observations. Hence, using the RE for comparing observations of tracer distributions with those from model simulations potentially presents a novel approach for analysing mixing in the stratosphere

    Heart rate monitoring on the stroke unit. What does heart beat tell about prognosis? An observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Guidelines recommend maintaining the heart rate (HR) of acute stroke patients within physiological limits; data on the frequency and predictors of significant deviations from these limits are scarce.</p> <p>Methods</p> <p>Demographical data, stroke risk factors, NIH stroke scale score, lesion size and location, and ECG parameters were prospectively assessed in 256 patients with ischemic stroke. Patients were continuously monitored for at least 24 hours on a certified stroke unit. Tachycardia (HR ≥120 bpm) and bradycardia (HR <45 bpm) and cardiac rhythm (sinus rhythm or atrial fibrillation) were documented. We investigated the influence of risk factors on HR disturbances and their respective influence on dependence (modified Rankin Scale ≥ 3 after three months) and mortality.</p> <p>Results</p> <p>HR ≥120 bpm occurred in 39 patients (15%). Stroke severity (larger lesion size/higher NIHSS-score on admission), atrial fibrillation and HR on admission predicted its occurrence. HR <45 bpm occurred in 12 patients (5%) and was predicted by lower HR on admission. Neither HR ≥120 nor HR <45 bpm independently predicted poor outcome at three moths. Stroke location had no effect on the occurrence of HR violations. Clinical severity and age remained the only consistent predictors of poor outcome.</p> <p>Conclusions</p> <p>Significant tachycardia and bradycardia are frequent phenomena in acute stroke; however they do not independently predict clinical course or outcome. Continuous monitoring allows detecting rhythm disturbances in stroke patients and allows deciding whether urgent medical treatment is necessary.</p

    Author's reply

    No full text
    corecore